Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; : e2401345, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647436

ABSTRACT

The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers. The TQBT, distinct in non-symmetric structure and high dipole moment, imparts enhanced solubility in anisole-a green solvent-to the polymer TQBT-T. Furthermore, PTQBT-T possess a highly rigid and planar backbone owing to the nearly coplanar geometry and quinoidal nature of TQBT, resulting in strong aggregation in solution and localized aggregates in film. Remarkably, PTQBT-T films spuncast from anisole exhibit a hole mobility of 2.30 cm2 V-1 s-1, which is record high for green solvent-processable semiconducting polymers via spin-coating, together with commendable operational and storage stability. The hybrid building block emerges as a pioneering electroactive unit, shedding light on future design strategies in high-performance semiconducting polymers compatible with green processing and marking a significant stride towards ecofriendly organic electronics.

2.
Plant Physiol Biochem ; 208: 108442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38382345

ABSTRACT

Reversible histone acetylation and deacetylation play an essential role in regulating chromatin structure and gene expression. Histone deacetylases (HDACs) catalyze the removal of acetyl groups from lysine residues of core histones, resulting in closed chromatin structure and transcription repression. Although the HDCAs have been extensively studied in model plants, the HDAC members have not been identified in Phyla nodiflora (L.) Greene (P. nodiflora), a salt-tolerant plant species. Here, 17 PnHDAC genes were identified in the genome of P. nodiflora. Phylogenetic analysis displayed that the PnHDACs were classified into three groups, the RPD3/HDA1-group (11 members), the SIR2-group (2 members) and the plant-specific HD2-group (4 members). Transcription analysis displayed that the gene expression patterns of PnHDACs were affected by salt stress in P. nodiflora seedlings. PnHDT1 and PnHDT2, two HD2-type HDAC proteins were found to be subcellular localized in the nucleolus. Furthermore, overexpressing PnHDT1 and PnHDT2 in Arabidopsis decreased the sensitivity to plant hormone abscisic acid whereas reduced the tolerance to salt stress during seed germination and seedling stages. Overall, our work identified the PnHDAC gene family for the first time in P. nodiflora and revealed an involvement of PnHDT1 and PnHDT2 in salt stress tolerance, which may contribute to uncover the mechanism of P. nodiflora in adaption to salt environments.


Subject(s)
Abscisic Acid , Arabidopsis , Phylogeny , Plant Growth Regulators , Arabidopsis/genetics , Seedlings/genetics , Salt Tolerance/genetics , Chromatin , Gene Expression Regulation, Plant , Stress, Physiological/genetics
3.
Mater Horiz ; 11(1): 283-296, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37943155

ABSTRACT

Enhancing the solution-processability of conjugated polymers (CPs) without diminishing their thin-film crystallinity is crucial for optimizing charge transport in organic field-effect transistors (OFETs). However, this presents a classic "Goldilocks zone" dilemma, as conventional solubility-tuning methods for CPs typically yield an inverse correlation between solubility and crystallinity. To address this fundamental issue, a straightforward skeletal randomization strategy is implemented to construct a quinoid-donor conjugated polymer, PA4T-Ra, that contains para-azaquinodimethane (p-AQM) and oligothiophenes as repeat units. A systematic study is conducted to contrast its properties against polymer homologues constructed following conventional solubility-tuning strategies. An unusually concurrent improvement of solubility and crystallinity is realized in the random polymer PA4T-Ra, which shows moderate polymer chain aggregation, the highest crystallinity and the least lattice disorder. Consequently, PA4T-Ra-based OFETs, fabricated under ambient air conditions, deliver an excellent hole mobility of 3.11 cm2 V-1 s-1, which is about 30 times higher than that of the other homologues and ranks among the highest for quinoidal CPs. These findings debunk the prevalent assumption that a random polymer backbone sequence results in decreased crystallinity. The considerable advantages of the skeletal randomization strategy illuminate new possibilities for the control of polymer aggregation and future design of high-performance CPs, potentially accelerating the development and commercialization of organic electronics.

4.
Plant Physiol Biochem ; 202: 107931, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37557017

ABSTRACT

The AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) transcription factors play important roles in regulating plant development and stress response. However, the AHL family genes have not been identified in tomato (Solanum lycopersicum) and their biological functions have not been elucidated. In this work, the gene families encoding AHLs were identified in tomato genome, and their physical and chemical characteristics, subcellular localization, gene expression profiles during fruit development and upon abiotic stimulus were investigated. Overall, a total of 18 AHL members were identified in tomato genome, phylogenetic analysis classified these SlAHL members into two clades, clade A (SlAHL1-8) and clade B (SlAHL9-18). Six clade A SlAHLs were detected to be subcellular localized in the nucleus. The transcripts of the representative clade A SlAHLs predominantly accumulated 10 days post anthesis (dpa) in tomato fruits, revealing an involvement of these SlAHLs in early fruit development. Furthermore, compared with clade B members, the transcripts of the clade A SlAHLs were more responsive to heat, drought, cold and salt stresses, suggesting that these SlAHLs may play major roles in response to abiotic stresses. Moreover, overexpression of SlAHL1 and SlAHL7 in Arabidopsis increased the sensitivity to ABA during seed germination and seedling stages. Overexpression of SlAHL1 inhibited seed germination while increased primary root elongation upon salt and drought stresses. Together, our work suggested that the clade A SlAHL genes may play an important role in response to abiotic stresses, which paving the way for future functional analysis of AHL genes in tomato and other Solanaceae species.


Subject(s)
Arabidopsis , Solanum lycopersicum , Solanum lycopersicum/genetics , Phylogeny , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant
5.
Cell Rep ; 42(8): 112832, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37498740

ABSTRACT

The mitogen-activated protein kinase (MAPK) cascade consisting of MKKK, MKK, and MPK plays an indispensable role in various plant physiological processes. Previously, we showed that phosphorylation of MabZIP21 by MaMPK6-3 is involved in banana fruit ripening, but the regulatory mechanism by which MKK controls banana fruit ripening remains unclear. Here, ripening-induced MaMKK1 from banana fruit is characterized, and transiently overexpressing and silencing of MaMKK1 in banana fruit accelerates and inhibits fruit ripening, respectively, possibly by influencing phosphorylation and activity of MPK. MaMKK1 interacts with and phosphorylates MaMPK6-3 and MaMPK11-4 mainly at the pTEpY residues, resulting in MPK activation. MaMPK11-4 phosphorylates MabZIP21 to elevate its transcriptional activation ability. Transgenic tomato fruit expressing MabZIP21 ripen quickly with a concomitant increase in MabZIP21 phosphorylation. Additionally, MabZIP21 activates MaMPK11-4 and MaMKK1 transcription to form a regulatory feedback loop. Collectively, here we report a regulatory pathway of the MaMPK6-3/11-4-MabZIP21 module in controlling banana fruit ripening.


Subject(s)
Musa , Transcription Factors , Transcription Factors/metabolism , Musa/genetics , Musa/metabolism , Fruit/genetics , Phosphorylation , Transcriptional Activation , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Ethylenes/metabolism , Ethylenes/pharmacology
6.
Acc Chem Res ; 56(12): 1669-1682, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37279333

ABSTRACT

ConspectusThe past 50 years of discovery in organic electronics have been driven in large part by the donor-acceptor design principle, wherein electron-rich and electron-poor units are assembled in conjugation with each other to produce small band gap materials. While the utility of this design strategy is undoubtable, it has been largely exhausted as a frontier of new avenues to produce and tune novel functional materials to meet the needs of the ever-increasing world of organic electronics applications. Its sister strategy of joining quinoidal and aromatic groups in conjugation has, by comparison, received much less attention, to a great extent due to the categorically poor stability of quinoidal conjugated motifs.In 2017 though, the p-azaquinodimethane (AQM) motif was first unveiled, which showed a remarkable level of stability despite being a close structural analogue to p-quinodimethane, a notably reactive compound. In contrast, dialkoxy AQM small molecules and polymers are stable even under harsh conditions and could thus be incorporated into conjugated polymers. When polymerized with aromatic subunits, these AQM-based polymers show notably reduced band gaps that follow reversed structure-property trends to some of their donor-acceptor polymer counterparts and yield organic field-effect transistor (OFET) hole mobilities above 5 cm2 V-1 s-1. Additionally, in an ongoing study, these AQM-based compounds are also showing promise as singlet fission (SF) active materials due to their mild diradicaloid character.An expanded world of AQMs was accessed through their ditriflate derivatives, which were first used to produce ionic AQMs (iAQMs) sporting two directly attached cationic groups that significantly affect the AQM motif's electronics, producing strongly electron-withdrawing quinoidal building blocks. Conjugated polyelectrolytes (CPEs) created with these iAQM building blocks exhibit optical band gaps stretching into the near-infrared I (NIR-I) region and showed exemplary behavior as photothermal therapy agents.In contrast to these stable AQM examples, the synthetic exploration of AQMs also produced examples of more typical diradicaloid reactivity but in forms that were controllable and produced intriguing and high-value products. With certain substitution patterns, AQMs were found to dimerize to form highly substituted [2.2]paracyclophanes in distinctly more appreciable yields than typical cyclophane formation reactions. Certain AQM ditriflates, when crystallized, undergo light-induced topochemical polymerization to form ultrahigh molecular weight (>106 Da) polymers that showed excellent performances as dielectric energy storage materials. These same AQM ditriflates could be used to produce the strongly electron-donating redox-active pentacyclic structure: pyrazino[2,3-b:5,6-b']diindolizine (PDIz). The PDIz motif allowed for the synthesis of exceedingly small band gap (0.7 eV) polymers with absorbances reaching all the way into the NIR-II region that were also found to produce strong photothermal effects. Both as stable quinoidal building blocks and through their controllable diradicaloid reactivity, AQMs have already proven to be versatile and effective as functional organic electronics materials.

7.
Environ Sci Pollut Res Int ; 30(20): 57653-57666, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36971945

ABSTRACT

Although effects of atmospheric nitrogen (N) deposition on forest plants have been widely investigated, N interception and absorption effects by forest canopy should not be neglected. Moreover, how N deposition change the molecular biological process of understory dominant plants, which was easily influenced by canopy interception so as to further change physiological performance, remains poorly understood. To assess the effects of N deposition on forest plants, we investigated the effects of understory (UAN) and canopy N addition (CAN) on the transcriptome and physiological properties of Ardisia quinquegona, a dominant subtropical understory plant species in an evergreen broad-leaved forest in China. We identified a total of 7394 differentially expressed genes (DEGs). Three of these genes were found to be co-upregulated in CAN as compared to control (CK) after 3 and 6 h of N addition treatment, while 133 and 3 genes were respectively found to be co-upregulated and co-downregulated in UAN as compared to CK. In addition, highly expressed genes including GP1 (a gene involved in cell wall biosynthesis) and STP9 (sugar transport protein 9) were detected in CAN, which led to elevated photosynthetic capacity and accumulation of protein and amino acid as well as decrease in glucose, sucrose, and starch contents. On the other hand, genes associated with transport, carbon and N metabolism, redox response, protein phosphorylation, cell integrity, and epigenetic regulation mechanism were affected by UAN, resulting in enhanced photosynthetic capacity and carbohydrates and accumulation of protein and amino acid. In conclusion, our results showed that the CAN compared to UAN treatment had less effects on gene regulation and carbon and N metabolism. Canopy interception of N should be considered through CAN treatment to simulate N deposition in nature.


Subject(s)
Ardisia , Trees , Trees/metabolism , Ardisia/metabolism , Nitrogen/metabolism , Carbon/metabolism , Epigenesis, Genetic , Forests , Plants/metabolism , Carbohydrates , China , Amino Acids/metabolism , Ecosystem
8.
Plant Sci ; 330: 111641, 2023 May.
Article in English | MEDLINE | ID: mdl-36806610

ABSTRACT

Chlorophylls are the major pigments that harvest light energy during photosynthesis in plants. Although reactions in chlorophyll biogenesis have been largely known, little attention has been paid to the post-translational regulation mechanism of this process. In this study, we found that four lysine sites (K128/340/350/390) of NADPH:protochlorophyllide oxidoreductase A (PORA), which catalyzes the only light-triggered step in chlorophyll biosynthesis, were acetylated after dark-grown seedlings transferred to light via acetylomics analysis. Etiolated seedlings with K390 mutation of PORA had a lower greening rate and decreased PORA acetylation after illumination. Importantly, K390 of PORA was found extremely conserved in plants and cyanobacteria via bioinformatics analysis. We further demonstrated that the acetylation level of PORA was increased by exposing the dark-grown seedlings to the histone deacetylase (HDAC) inhibitor TSA. Thus, the HDACs probably regulate the acetylation of PORA, thereby controlling this non-histone substrate to catalyze the reduction of Pchlide to produce chlorophyllide, which provides a novel regulatory mechanism by which the plant actively tunes chlorophyll biosynthesis during the conversion from skotomorphogenesis to photomorphogenesis.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oxidoreductases Acting on CH-CH Group Donors , Arabidopsis/genetics , Arabidopsis/metabolism , Oxidoreductases/genetics , NADP , Arabidopsis Proteins/metabolism , Acetylation , Oxidoreductases Acting on CH-CH Group Donors/genetics , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Light , Chlorophyll , Protochlorophyllide
9.
Cells ; 12(2)2023 01 12.
Article in English | MEDLINE | ID: mdl-36672228

ABSTRACT

Seed germination is the first step in initiating a new life cycle in seed plants. Light is a major environmental factor affecting seed germination. Phytochrome B (phyB) is the primary photoreceptor promoting germination during the initial phase of imbibition. Post-translational histone methylation occurring at both lysine and arginine residues plays a crucial role in transcriptional regulation in plants. However, the role of histone lysine demethylation in light-initiated seed germination is not yet reported. Here, we identified that Relative of Early Flowering 6 (REF6)/Jumonji Domain-containing Protein 12 (JMJ12), a histone H3 lysine 27 (H3K27) demethylase, acts as a positive regulator of light-initiated seed germination. The loss of function of REF6 in Arabidopsis inhibits phyB-dependent seed germination. Genome-wide RNA-sequencing analysis revealed that REF6 regulates about half of the light-responsive transcriptome in imbibed seeds, including genes related to multiple hormonal signaling pathways and cellular processes. Phenotypic analyses indicated that REF6 not only regulates seed germination through GA (gibberellin) and ABA (abscisic acid) processes but also depends on the auxin signaling pathway. Furthermore, REF6 directly binds to and decreases the histone H3K27me3 levels of auxin-signaling- and cell-wall-loosening-related genes, leading to the activated expression of these genes in imbibed seeds. Taken together, our study identifies REF6 as the first histone lysine demethylase required for light-initiated seed germination. Our work also reveals the important role of REF6-mediated histone H3K27 demethylation in transcriptional reprogramming in the light-initiated seed germination process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Germination/genetics , Histones/metabolism , Arabidopsis Proteins/metabolism , Histone Demethylases/metabolism , Lysine/metabolism , Seeds/genetics , Seeds/metabolism , Indoleacetic Acids/metabolism , Transcription Factors/metabolism
10.
J Adv Res ; 42: 177-188, 2022 12.
Article in English | MEDLINE | ID: mdl-36513412

ABSTRACT

INTRODUCTION: Histone and non-histone methylations are important post-translational modifications in plants. Histone methylation plays a crucial role in regulating chromatin structure and gene expression. However, the involvement of non-histone methylation in plant biological processes remains largely unknown. METHODS: The methylated substrates and methylation sites during tomato fruit ripening were identified by LC-MS/MS. Bioinformatics of lysine methylated proteins was conducted to analyze the possible role of methylated proteins. The effects of methylation modification on protein functions were preliminarily investigated by site-directed mutation simulation. RESULTS: A total of 241 lysine methylation (mono-, di- and trimethylation) sites in 176 proteins were identified with two conserved methylation motifs: xxxxxxExxx_K_xxxExxxxxx and xxxxxxExxx_K_xxxxxxxxxx. These methylated proteins were mainly related to fruit ripening and senescence, oxidation reduction process, signal transduction, stimulus and stress responses, and energy metabolism. Three representative proteins, thioredoxin (Trx), glutathione S-transferase T1 (GST T1), and NADH dehydrogenase (NOX), were selected to investigate the effect of methylation modifications on protein activity. Mimicking demethylation led to decreased Trx activity but increased GST T1 and NOX activities. In addition, RT-qPCR exhibited that the expression of many genes that encode proteins subjected to methylation was upregulated during fruit ripening. CONCLUSION: Our study suggests that tomato fruit ripening undergo non-histone lysine methylation, which may participate in the regulation of fruit ripening. It is the first report of methyl proteome profiling of non-histone lysine in horticultural crops.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Methylation , Proteome/metabolism , Lysine/metabolism , Gene Expression Regulation, Plant , Fruit/genetics , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Histones/genetics , Histones/metabolism
11.
Cells ; 11(23)2022 Nov 26.
Article in English | MEDLINE | ID: mdl-36497048

ABSTRACT

Seed germination is essential for the colonization of the land plants. Light is a major environmental factor affecting seed germination, which is predominantly regulated by photoreceptor phytochrome B (PHYB). PHYB is activated by red light (designated as PHYB-on) whereas it is inactivated by far-red light (referred as PHYB-off). We previously reported that Arabidopsis histone deacetylase HDA15 interacts with phytochrome-interacting factor1 (PIF1) to repress seed germination under PHYB-off conditions. Here, we show that HDA15 plays a negative role in regulating seed germination under PHYB-on conditions. Overexpression of HDA15 in Arabidopsis restrains PHYB-dependent seed germination, while gibberellin (GA) relieves the repressive role of HDA15 under PHYB-off conditions. We further show that HDA15 directly binds to GA20ox1 and GA20ox2, two key GA biosynthesis genes and represses their expression by removal of histone H3 and H4 acetylation. Moreover, the levels of HDA15 transcript and HDA15 protein are up-regulated in the phyB mutant. Collectively, our work proposes that HDA15 acts as a negative regulator of PHYB-dependent seed germination by directly repressing GA20ox1/2 gene expression.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome B/genetics , Phytochrome B/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Germination/genetics , Histone Deacetylases/genetics , Histone Deacetylases/metabolism , Seeds/genetics , Seeds/metabolism , Gene Expression
12.
Front Plant Sci ; 13: 1028245, 2022.
Article in English | MEDLINE | ID: mdl-36275597

ABSTRACT

Dendrobium officinale is a precious medicinal Chinese herb that employs facultative crassulacean acid metabolism (CAM) and has a high degree of abiotic stress tolerance, but the molecular mechanism underlying the response of this orchid to abiotic stresses is poorly understood. In this study, we analyzed the root microstructure of D. officinale plantlets and verified the presence of chloroplasts by transmission electron microscopy. To obtain a more comprehensive overview of the molecular mechanism underlying their tolerance to abiotic stress, we performed whole-transcriptome sequencing of the roots of 10-month-old plantlets exposed to salt (NaCl) treatment in a time-course experiment (0, 4 and 12 h). The total of 7376 differentially expressed genes that were identified were grouped into three clusters (P < 0.05). Metabolic pathway analysis revealed that the expression of genes related to hormone (such as auxins, cytokinins, abscisic acid, ethylene and jasmonic acid) biosynthesis and response, as well as the expression of genes related to photosynthesis, amino acid and flavonoid metabolism, and the SOS pathway, were either up- or down-regulated after salt treatment. Additionally, we identified an up-regulated WRKY transcription factor, DoWRKY69, whose ectopic expression in Arabidopsis promoted seed germination under salt tress. Collectively, our findings provide a greater understanding of the salt stress response mechanisms in the roots of a facultative CAM plant. A number of candidate genes that were discovered may help plants to cope with salt stress when introduced via genetic engineering.

13.
Front Plant Sci ; 13: 882884, 2022.
Article in English | MEDLINE | ID: mdl-35909755

ABSTRACT

Salinity adversity has been a major environmental stressor for plant growth and reproduction worldwide. Semi-mangrove Clerodendrum inerme, a naturally salt-tolerant plant, can be studied as a successful example to understand the biological mechanism of saline resistance. Since it is a sophisticated and all-round scale process for plants to react to stress, our greenhouse study interpreted the response of C. inerme to salt challenge in the following aspects: morphology, osmotic protectants, ROS production and scavenging, ion homeostasis, photosynthetic efficiency, and transcriptome reprogramming. The results drew an overview picture to illustrate the tolerant performance of C. inerme from salt acclimatization (till medium NaCl level, 0.3 mol/L) to salinity stress (high NaCl level, 0.5 mol/L). The overall evaluation leads to a conclusion that the main survival strategy of C. inerme is globally reshaping metabolic and ion profiles to adapt to saline adversity. These findings uncover the defense mechanism by which C. inerme moderates its development rate to resist the short- and long-term salt adversity, along with rebalancing the energy allocation between growth and stress tolerance.

14.
Plant J ; 110(6): 1651-1669, 2022 06.
Article in English | MEDLINE | ID: mdl-35395128

ABSTRACT

Fruit ripening is a complex developmental process, which is modulated by both transcriptional and post-translational events. Control of fruit ripening is important in maintaining moderate quality traits and minimizing postharvest deterioration. In this study, we discovered that the transcription factor MaMYB4 acts as a negative regulator of fruit ripening in banana. The protein levels of MaMYB4 decreased gradually with banana fruit ripening, paralleling ethylene production, and decline in firmness. DNA affinity purification sequencing combined with RNA-sequencing analyses showed that MaMYB4 preferentially binds to the promoters of various ripening-associated genes including ethylene biosynthetic and cell wall modifying genes. Furthermore, ectopic expression of MaMYB4 in tomato delayed tomato fruit ripening, which was accompanied by downregulation of ethylene biosynthetic and cell wall modifying genes. Importantly, two RING finger E3 ligases MaBRG2/3, whose protein accumulation increased progressively with fruit ripening, were found to interact with and ubiquitinate MaMYB4, contributing to decreased accumulation of MaMYB4 during fruit ripening. Transient overexpression of MaMYB4 and MaBRG2/3 in banana fruit ripening delayed or promoted fruit ripening by inhibiting or stimulating ethylene biosynthesis, respectively. Taken together, we demonstrate that MaMYB4 negatively modulates banana fruit ripening, and that MaMYB4 abundance could be regulated by protein ubiquitination, thus providing insights into the role of MaMYB4 in controlling fruit ripening at both transcriptional and post-translational levels.


Subject(s)
Musa , Ethylenes/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Musa/genetics , Musa/metabolism , Plant Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism
15.
New Phytol ; 233(3): 1202-1219, 2022 02.
Article in English | MEDLINE | ID: mdl-34729792

ABSTRACT

The ripening of fleshy fruits is a unique developmental process that Arabidopsis and rice lack. This process is driven by hormones and transcription factors. However, the critical and early regulators of fruit ripening are still poorly understood. Here, we revealed that SlJMJ7, an H3K4 demethylase, is a critical negative regulator of fruit ripening in tomato. Combined genome-wide transcription, binding sites, histone H3K4me3 and DNA methylation analyses demonstrated that SlJMJ7 regulates a key group of ripening-related genes, including ethylene biosynthesis (ACS2, ACS4 and ACO6), transcriptional regulation (RIN and NOR) and DNA demethylation (DML2) genes, by H3K4me3 demethylation. Moreover, loss of SlJMJ7 function leads to increased H3K4me3 levels, which directly activates ripening-related genes, and to global DML2-mediated DNA hypomethylation in fruit, which indirectly prompts expression of ripening-related genes. Together, these effects lead to accelerated fruit ripening in sljmj7 mutant. Our findings demonstrate that SlJMJ7 acts as a master negative regulator of fruit ripening not only through direct removal of H3K4me3 from multiple key ripening-related factors, but also through crosstalk between histone and DNA demethylation. These findings reveal a novel crosstalk between histone methylation and DNA methylation to regulate gene expression in plant developmental processes.


Subject(s)
Solanum lycopersicum , DNA , DNA Demethylation , DNA Methylation/genetics , Ethylenes/metabolism , Fruit/physiology , Gene Expression Regulation, Plant , Histones/metabolism , Solanum lycopersicum/metabolism , Plant Proteins/metabolism
16.
Plant Physiol ; 188(3): 1665-1685, 2022 03 04.
Article in English | MEDLINE | ID: mdl-34792564

ABSTRACT

Ripening of fleshy fruits involves both diverse post-translational modifications (PTMs) and dynamic transcriptional reprogramming, but the interconnection between PTMs, such as protein phosphorylation and transcriptional regulation, in fruit ripening remains to be deciphered. Here, we conducted a phosphoproteomic analysis during banana (Musa acuminata) ripening and identified 63 unique phosphopeptides corresponding to 49 proteins. Among them, a Musa acuminata basic leucine zipper transcription factor21 (MabZIP21) displayed elevated phosphorylation level in the ripening stage. MabZIP21 transcript and phosphorylation abundance increased during banana ripening. Genome-wide MabZIP21 DNA binding assays revealed MabZIP21-regulated functional genes contributing to banana ripening, and electrophoretic mobility shift assay, chromatin immunoprecipitation coupled with quantitative polymerase chain reaction, and dual-luciferase reporter analyses demonstrated that MabZIP21 stimulates the transcription of a subset of ripening-related genes via directly binding to their promoters. Moreover, MabZIP21 can be phosphorylated by MaMPK6-3, which plays a role in banana ripening, and T318 and S436 are important phosphorylation sites. Protein phosphorylation enhanced MabZIP21-mediated transcriptional activation ability, and transient overexpression of the phosphomimetic form of MabZIP21 accelerated banana fruit ripening. Additionally, MabZIP21 enlarges its role in transcriptional regulation by activating the transcription of both MaMPK6-3 and itself. Taken together, this study reveals an important machinery of protein phosphorylation in banana fruit ripening in which MabZIP21 is a component of the complex phosphorylation pathway linking the upstream signal mediated by MaMPK6-3 with transcriptional controlling of a subset of ripening-associated genes.


Subject(s)
Fruit/growth & development , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Musa/growth & development , Musa/genetics , Phosphorylation/genetics , Transcription Factors/metabolism , China , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Musa/metabolism , Transcription Factors/genetics
17.
Planta ; 254(4): 79, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34542712

ABSTRACT

MAIN CONCLUSION: HDA704 enhances drought and salt tolerance via stomata-regulated mechanism. HDA704 negatively regulates stomatal aperture and density, repressing the transcription of DST and ABIL2 by histone deacetylation modification. Drought and salinity can damage crop growth and reduce yield. Stomata play an important role in abiotic stress tolerance. In this study on rice, we identified the RPD3/HDA1-type histone deacetylase HDA704 as a positive regulatory factor in drought and salt tolerance. HDA704 was induced by drought and salt stresses. Overexpression of HDA704 in transgenic rice promoted stomatal closure, decreased the number of stomata and slowed down the rate of water loss, consequently resulting in increased drought and salt tolerance. By contrast, knockdown of HDA704 in transgenic rice decreased stomatal closure and accelerated the rate of water loss, leading to decrease drought and salt tolerance. We detected the transcript expression of DST (Drought and Salt Tolerance) and ABIL2 (Abscisic Acid-insensitive Like2), which positively regulate stomatal aperture and density in rice. Our results showed that HDA704 directly binds to DST and ABIL2, repressing their expression via histone deacetylation modification. Collectively, these findings reveal that HDA704 positively regulates drought and salt tolerance by repressing the expression of DST and ABIL2. Our findings provide a new insight into the molecular mechanisms of stomata-regulated abiotic stress tolerance of plants.


Subject(s)
Oryza , Abscisic Acid , Droughts , Gene Expression Regulation, Plant , Histone Deacetylases/genetics , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/metabolism , Plants, Genetically Modified/metabolism , Salt Tolerance , Stress, Physiological
18.
J Plant Physiol ; 258-259: 153356, 2021.
Article in English | MEDLINE | ID: mdl-33423816

ABSTRACT

Late embryogenesis abundant (LEA) proteins are widely involved in plant stress responsive, while their involvement in callus formation is largest unknown. In this study, we identified and conducted expression analysis of the LEA genes from Phalaenopsis equestris and Dendrobium officinale, and characterized a LEA gene from D. officinale. A total 57 and 59 LEA genes were identified in P. equestris and D. officinale, respectively. A phylogenetic analysis showed that AtM, LEA_5 and Dehydrin groups were absent in both orchids. LEA_1 group genes were strongly expressed in seeds, significantly down-regulated in flowers, and absent in vegetative organs (leaves, stems and roots) in both orchids. Moreover, LEA_1 and LEA_4 group genes from D. officinale were abundant in the protocorm-like body stage and were dramatically up-regulated in response to abscisic acid and salinity stress. A LEA_1 gene (DoLEA43) was selected for further functional analysis. DoLEA43 protein was localized in the cytoplasm and nucleus, and its promoter contained a WUN-motif that was modulated by wounding. Overexpression of DoLEA43 in Arabidopsis enhanced callus induction, causing changes to callus formation-related genes such as WIND1. Our results indicate the involvement of LEA genes in the induction of callus, which provide insights into plant regeneration.


Subject(s)
Gene Expression , Genes, Plant , Orchidaceae/genetics , Plant Proteins/genetics , Dendrobium/genetics , Dendrobium/metabolism , Gene Expression Profiling , Orchidaceae/metabolism , Plant Proteins/metabolism , Salt Stress/genetics
19.
J Am Chem Soc ; 142(42): 17892-17896, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33044060

ABSTRACT

The exploitation of singlet fission (SF) in photovoltaic devices is restricted by the limited number of SF materials available and the conflicting requirement of intermolecular interactions to satisfy both efficient SF and subsequent triplet extraction. Intramolecular SF (iSF) represents an emerging alternative and may prove simpler to implement in devices. On account of the excellent chemical structure tunability and solution processability, conjugated polymers have emerged as promising candidates for iSF materials despite being largely underexplored. It remains a significant challenge to develop SF-capable conjugated polymers and achieve efficient dissociation of the formed triplet pairs simultaneously. In this contribution, we present a new iSF material in a para-azaquinodimethane-based quinoidal conjugated polymer. Using transient optical techniques, we show that an ultrafast iSF process dominates the deactivation of the excited state in such polymer, featuring ultrafast population (<1 ps) and stepwise dissociation of triplet pairs. Notably, these multiexciton states could further diffuse apart to produce long-lived free triplets (tens of µs) in strongly coupled aggregates in solid thin film. Such findings not only introduce a new iSF-active conjugated polymer to the rare SF material family but also shed unique insight into interchain interaction-promoted triplet pair dissociation in aggregates of conjugated polymers, thus openning new avenues for developing next-generation SF-based photovoltaic materials.

20.
Plant Mol Biol ; 104(4-5): 529-548, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32876816

ABSTRACT

KEY MESSAGE: This research provides comprehensive insight into the molecular networks and molecular mechanisms underlying D. officinale flower development. Flowers are complex reproductive organs and play a crucial role in plant propagation, while also providing sustenance for insects and natural bioactive metabolites for humans. However, knowledge about gene regulation and floral metabolomes in flowers is limited. In this study, we used an important orchid species (Dendrobium officinale), whose flowers can be used to make herbal tea, to perform transcriptome sequencing and metabolic profiling of early- and medium-stage flower buds, as well as opened flowers, to provide comprehensive insight into the molecular mechanisms underlying flower development. A total of 8019 differentially expressed genes (DEGs) and 239 differentiated metabolites were found. The transcription factors that were identified and analyzed belong exclusively to the MIKC-type MADS-box proteins and auxin responsive factors that are known to be involved in flower development. The expression of genes involved in chlorophyll and carotenoid biosynthesis strongly matched the metabolite accumulation patterns. The genes related to flavonoid and polysaccharide biosynthesis were active during flower development. Interestingly, indole-3-acetic acid and abscisic acid, whose trend of accumulation was inverse during flower development, may play an important role in this process. Collectively, the identification of DEGs and differentiated metabolites could help to illustrate the regulatory networks and molecular mechanisms important for flower development in this orchid.


Subject(s)
Dendrobium/growth & development , Dendrobium/genetics , Dendrobium/metabolism , Flowers/growth & development , Abscisic Acid/metabolism , Carotenoids/metabolism , Chlorophyll/metabolism , Flavonoids/metabolism , Flowers/genetics , Flowers/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , MADS Domain Proteins/genetics , Phylogeny , Plant Proteins/genetics , Polysaccharides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...